The molar volume of FeO–MgO–Fe$_2$O$_3$–Cr$_2$O$_3$–Al$_2$O$_3$–TiO$_2$ spinels

Emily A. Hamecher, Paula M. Antoshechkina, Mark S. Ghiorso & Paul D. Asimow
Your article is protected by copyright and all rights are held exclusively by Springer-Verlag. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication.
The molar volume of FeO–MgO–Fe$_2$O$_3$–Cr$_2$O$_3$–Al$_2$O$_3$–TiO$_2$ spinels

Emily A. Hamecher · Paula M. Antoshechkina ·
Mark S. Ghiorso · Paul D. Asimow

Received: 28 September 2011 / Accepted: 31 July 2012 © Springer-Verlag 2012

AbstractWe define and calibrate a new model of molar volume as a function of pressure, temperature, ordering state, and composition for spinels in the supersystem (Mg, Fe$^{2+}$)(Al, Cr, Fe$^{3+}$)$_2$O$_4$ – (Mg, Fe$^{2+}$)$_2$TiO$_4$. We use 832 X-ray and neutron diffraction measurements performed on spinels at ambient and in situ high-P, T conditions to calibrate end-member equations of state and an excess volume model for this system. The effect on molar volume of cation ordering over the octahedral and tetrahedral sites is captured with linear dependence on Mg$^{2+}$, Al$^{3+}$, and Fe$^{3+}$ site occupancy terms. We allow standard-state volumes and coefficients of thermal expansion of the end members to vary within their uncertainties during extraction of the mixing properties, in order to achieve the best fit. Published equations of state of the various spinel end members are analyzed to obtain optimal values of the bulk modulus and its pressure derivative, for each explicit end member. For any spinel composition in the supersystem, the model molar volume is obtained by adding excess volume and order-dependent terms to a linear combination of the five end-member volumes, estimated at pressure and temperature using the high-T Vinet equation of state. The preferred model has a total of 9 excess volume and order-dependent parameters and fits nearly all experiments to within 0.02 J/bar/mol, or better than 0.5 % in volume. The model is compared to the current MELTS spinel model with a demonstration of the impact of the model difference on the estimated spinel-garnet lherzolite transition pressure.

Keywords Spinel · Molar volume · Thermodynamic modeling · MELTS

Introduction

Spinel-group minerals are commonly found in igneous and metamorphic rocks in the Earth’s crust and upper mantle and are frequently used as petrogenetic indicators (Buddington and Lindsley 1964; Sack 1982; Dick and Bullen 1984; Ghiorso and Sack 1991; Ghiorso and Evans 2008). Spinel is a significant reference phase for high-pressure thermodynamic solution models of melts and of other solid phases, because it contains several key components of upper mantle assemblages at appreciable concentrations and because high-quality activity-composition models for spinels have been constructed (Sack 1982; Nell and Wood 1989; Sack and Ghiorso 1991a, b; Kessel et al. 2003). Beyond their petrologic significance, natural and synthetic spinel-group phases have numerous applications in the material sciences (e.g., Taberna et al. 2006; Yang et al. 2007).

The prevalence of spinels can be partly explained by the variety of cations of different valence that can be accommodated within the structure. While the spinel structure is quite simple, its solid solution behavior is complex. Cubic spinels (space group Fd3m) have the stoichiometry AB$_2$O$_4$, where A and B are cations with, most often, 2+ and 3+ charge, respectively, although substitution toward end members where A is 4+ and B is 2+ can occur. Additional

Communicated by J. Blundy.

Electronic supplementary materialThe online version of this article (doi:10.1007/s00410-012-0790-0) contains supplementary material, which is available to authorized users.

E. A. Hamecher (✉) · P. M. Antoshechkina · P. D. Asimow
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
email: hamecher@gps.caltech.edu

M. S. Ghiorso
OFM Research, 7336 24th Ave NE, Seattle, WA 98115, USA

Published online: 24 August 2012
complexity arises due to the existence of two distinct cation coordination environments and the ability of a wide array of cations to distribute themselves over the octahedral and tetrahedral crystallographic sites. “Normal” spinels are defined as having the A ion in the tetrahedral site and both B ions in the two identical octahedral sites. Perfectly “inverse” spinels have one B ion per formula unit occupying the tetrahedral site, with one A and one B ion residing in the octahedral sites. For many choices of A and B, spinel solid solutions can adopt ordering states at any point along this continuum. A number of models have described the extent of such ordering in spinels (Callen et al. 1956; O’Neill and Navrotsky 1983, 1984; Sack and Ghiorso 1991a) in terms of the energetics of the cation-ordering reactions.

Molar volume is an important thermodynamic quantity at high pressures, both when using spinels to infer petrogenetic information from high-pressure rocks and particularly when using spinels from high-pressure experiments to define chemical potentials in coexisting phases. Because pressures of interest in spinel-bearing experiments range up to at least 3 GPa (3 × 10^9 bar), differences in volume of only 0.03 J/bar/mol (i.e., 0.3 cm^3/mol, or ≤1% of typical spinel molar volumes) yield differences of 1 kJ/mol in chemical potentials, which is often the accuracy level sought in calibrations of solid- and liquid-solution models. A model of spinel volumes with the necessary accuracy needs to account not only for equations of state of pure end members and considerable deviation from ideal mixing of compositions but also for significant effects of ordering state on the volume (O’Neill and Navrotsky 1983; Hazen and Navrotsky 1996). Differences in ionic size, charge, and/or coordination environment can contribute to non-ideal behavior (O’Neill and Navrotsky 1984). Pressure, in addition to temperature and composition, can strongly affect cation-ordering state, which in turn affects physical properties, including the elastic moduli (Hazen and Navrotsky 1996). The complexities due to cation ordering over distinct crystallographic sites, along with the wide range of stable compositions of spinels, create difficulties in modeling their thermodynamic behavior, including molar volume (Sack and Ghiorso 1991a). Generally, studies are restricted to subsystems of spinels, for example, along a solid-solution binary. While limiting the system of interest usually allows one to recover the data used in calibration, discrepancies exist between various end-member models, that is, a particular spinel end member may be assigned different model volumes in fits to adjacent subsystems. Hence, currently available models are inadequate for modeling of volumes over the full compositional range of spinels formed in the Earth’s upper mantle. It is necessary to devise a comprehensive model applicable to the entire chemical system of the upper mantle.

In this work, we present a model of molar volumes of stoichiometric spinels containing the oxide components FeO-MgO-Cr₂O₃-Al₂O₃-TiO₂; the cations in this system account for at least 98% of the compositional range of natural spinels (Sack 1982). Our chosen set of independent compositional model end members is as follows: spinel sensu stricto (MgAl₂O₄), hercynite (FeAl₂O₄), magnetite (Fe₂O₃), chromite (FeCr₂O₄), and ulvöspinel (Fe₅TiO₄). Dependent end members in this system—magnesiochromite (MgCr₂O₄), magnesioferrite (MgFe₂O₄), and qandilite (Mg₂TiO₄)—are formed from linear combinations of the independent end members. As written, these are compositional end members only, and the order in which the cations are written should not be taken to imply an ordering state over tetrahedral and octahedral sites. Within the MELTS software, end-member thermodynamic quantities are calculated for the standard-state structural arrangement, and mixing properties are referenced to the end-member values. For calibration of the volume, we are therefore obliged to use end members with the ordering states adopted by Sack and Ghiorso (1991a, b), that is, normally ordered FeCr₂O₄ and Fe₅TiO₄, almost perfectly normal MgAl₂O₄ and FeAl₂O₄, and near-perfect inversely ordered Fe₂O₃. Note that this constraint did not apply to Sack and Ghiorso’s formulation of the activity-composition models, as the adopted end-member heat capacity functions (taken from the internally consistent database of Berman 1988) were independent of ordering state. In fact, the Sack and Ghiorso (1991a, b) model was calibrated using perfectly inverse ordered components; normally ordered and standard-state values for the compositional components were inferred from the fitted parameters.

Our primary motivation in this work is to develop a comprehensive spinel molar volume model for use in calibration of activity-composition models of garnet and pyroxene solid solutions. The thermodynamic models, along with a new silicate liquid equation of state (Ghiorso 2004a, b, c; Ghiorso and Kress 2004), will be incorporated into the next generation MELTS (Ghiorso and Sack 1995; Ghiorso et al. 2002; Asimow et al. 2004) model, xMELTS (Ghiorso et al. 2007). The new solid solution models will include some minor components, including Ti⁴⁺ and Cr³⁺. Because most constraints on the activity of garnets and pyroxenes at high-P are derived from experiments with coexisting spinels, we must be confident in the ability of our spinel model to realistically reproduce thermodynamic behavior over the entire applicable range of compositions. Additionally, producing a spinel molar volume model calibrated with recent in situ high-(P, T) X-ray and neutron diffraction data is crucial to our ability to accurately model the spinel-garnet transition in Earth’s upper mantle. For example, we recently calibrated Cr-Al exchange equilibria for garnet and spinel (Hamecher et al. 2009). When this
new calibration is used with the current MELTS model, a region of garnet–spinel coexistence in lherzolites is predicted with width in pressure comparable to experimental constraints. The transition occurs, however, at the unexpectedly low pressure of ~1.7 GPa, though this is not entirely due to the introduction of Cr to the system, as discussed below. The improved model of spinel molar volume presented here will enable coupled recalibration of the garnet and pyroxene models to match both the absolute pressure and width of this key transition in mantle lithology.

In this paper, we first discuss previous models of spinel molar volume, with attention to the ranges of composition they cover and inconsistencies among the models. We then present the X-ray and neutron diffraction and ultrasonic data used in our calibration, and the formulation of our model in terms of the components and ordering variables of the spinel solid solution model of Sack and Ghiorso (1991a, b). The calibration strategy we used to estimate the parameters of the model and assess goodness-of-fit to the data is outlined. Finally, we compare the final model to models from the literature and present an estimate of the magnitude of the impact of the new model on MELTS calculations and other high-pressure thermodynamic inferences.

Previous models

Several models for the molar volume of spinel-group minerals have been proposed. However, most of these models are restricted to binary subsystems. Furthermore, there are discrepancies between models with corresponding end members. In this section, we present examples of previous models of spinel molar volume.

The current molar volume model for spinels in MELTS and pMELTS covers the same compositional range as our proposed model. There is no mention of volume in Sack and Ghiorso (1991a) or Sack and Ghiorso (1991b) and, indeed, initially the entire system was assumed to have zero volume of mixing. However, before being put to use for calculation or calibration of other phases, the model was modified to include asymmetric excess volume of mixing terms along the \(\text{Fe}_3\text{O}_4-\text{Fe}_2\text{TiO}_4 \) join (Ghiorso was modified to include asymmetric excess volume for calculation or calibration of other phases, the model indeed, initially the entire system was assumed to have zero volume of mixing. However, before being put to use for calculation or calibration of other phases, the model was modified to include asymmetric excess volume of mixing terms along the \(\text{Fe}_3\text{O}_4-\text{Fe}_2\text{TiO}_4 \) join alongside consideration of all other possible binary excess terms in the composition space.

Oka et al. (1984) fit their molar volume data along the \(\text{MgAl}_2\text{O}_4-\text{MgCr}_2\text{O}_4 \) binary to an asymmetric regular solution model \(W_{\text{AlAlCr}(1-X_{\text{Cr}})X_{\text{Cr}} + W_{\text{AlCrCr}(1-X_{\text{Cr}})} X_{\text{Cr}}^2} \) (where \(X_{\text{Cr}} \) is mole fraction \(\text{MgCr}_2\text{O}_4 \) for this binary). For their best-characterized data, synthesized at 1,250 °C, they obtained excess volume parameters \(W_{\text{AlAIACr}} = 0.0524(91) \) and \(W_{\text{AlCrCr}} = 0.0040(92) \) J/bar/mol. On the other hand, average parameters for fits to three different sets of synthesis temperatures are \(W_{\text{AlAIACr}} = 0.0504 \) and \(W_{\text{AlCrCr}} = 0.0182 \) J/bar/mol (uncertainties not stated). Both versions of the model show positive deviation from ideality along the entire binary.

Doroshev et al. (1997) also investigated the molar volume of the \(\text{MgAl}_2\text{O}_4-\text{MgCr}_2\text{O}_4 \) subsystem. Phase equilibria experiments containing Cr-rich garnets were performed, and the multiphase products were analyzed by electron microprobe and X-ray diffraction. Doroshev et al. also adopted an asymmetric regular solution excess volume model, with the largest deviation from ideality in the Cr-rich region: the excess volume parameters are \(W_{\text{AlAIACr}} = 0.0722(90) \) and \(W_{\text{AlCrCr}} = -0.0483(75) \) J/bar/mol. The authors attribute the difference between the models to a more thorough characterization of the Cr-rich samples.

Brey et al. (1999) performed similar experiments to Doroshev et al. (1997), but in the larger system FeO-MgO-Al\(_2\)O\(_3\)-SiO\(_2\)-Cr\(_2\)O\(_3\). The explicit spinel end members in the Brey et al. model are \(\text{MgAl}_2\text{O}_4 \), \(\text{FeCr}_2\text{O}_4 \), and \(\text{MgCr}_2\text{O}_4 \). After considering a possible nonzero volume of reaction for the reciprocal (cross-site) reaction, Brey et al. discard this term. They retain an excess mixing volume due to exchange of \(\text{Mg}^{2+} \) and \(\text{Fe}^{2+} \) cations, fit by a symmetric model with the parameter \(W_{\text{FeMg}} = -0.020(7) \) J/bar/mol. Also, like Doroshev et al., Brey et al. use an asymmetric excess volume model for the \(\text{Cr}^{3+}:\text{Al}^{3+} \) exchange with parameters (recast into common form with above models) \(W_{\text{AlCrCr}} = 0.034(18) \) and \(W_{\text{AlCrCr}} = -0.014(12) \) J/bar/mol.

Higher pressures by fitting the formula for the high-\(T \) Vinet equation of state (see Eq. 6 below) for \(\text{MgAl}_2\text{O}_4 \) and \(\text{Fe}_3\text{O}_4 \) to the Berman (1988) polynomial equation of state (see Ghiorso 2004b). Since standard-state volume data for other spinel components are not given in Berman (1988), \(P \)- and \(T \)-coefficients for \(\text{MgAl}_2\text{O}_4 \) or \(\text{Fe}_3\text{O}_4 \) were assigned to the remaining end members. There is now an opportunity to simultaneously optimize both standard state and mixing terms in order to form an internally consistent general spinel system volume model for use in future calibration and calculation efforts. Our recalibration includes refinement of the asymmetric terms along the \(\text{Fe}_3\text{O}_4-\text{Fe}_2\text{TiO}_4 \) join alongside consideration of all other possible binary excess terms in the composition space.
m. This fit retains a negative deviation from ideality for Cr-rich compositions, but this result is only marginally significant, and does not fit the pure Fe-free data of Doroshev et al. and Oka et al. (1984) especially well.

Mattioli et al. (1987) derived a model of the volume of the ternary spinel system MgAl$_2$O$_4$–Fe$_3$O$_4$–cFe$_{8/3}$O$_4$. The volumes of the Fe$_3$O$_4$–cFe$_{8/3}$O$_4$ and MgAl$_2$O$_4$–cFe$_{8/3}$O$_4$ edges of this ternary system are treated as ideal. The MgAl$_2$O$_4$–Fe$_3$O$_4$ join is modeled as an asymmetric regular solution model, of the same form discussed above, with excess volume parameters $W_{mt-mt-sp} = 0.075(17)$ and $W_{mt-sp-sp} = 0.18(5)$ J/bar/mol, where $mt = Fe_3O_4$ and $sp = MgAl_2O_4$. In our final model, we find that an asymmetric excess volume term along the MgAl$_2$O$_4$–Fe$_3$O$_4$ binary is not justified by the data at ambient pressure and thus treat this join as symmetric.

Three choices of solid solution model for spinel, each one based on the thermodynamic dataset of Holland and Powell (1998), are included in the modeling package THERMO-CALC (e.g., Powell et al. 1998; currently hosted at http://www.metamorph.geo.uni-mainz.de/thermocalc/). None of the models incorporate any excess volume terms. The latest version of the thermodynamic database (Holland and Powell 2011) uses a modified equation of state that may be more easily extrapolated to very high pressures than the Murnaghan equation of state used in Holland and Powell (1998). Updated solid solution models have yet to be released. The Perple_X modeling package (e.g., Connolly 2009) offers the potential to adopt a wide variety of solid solution models, including several of those mentioned above (see http://www.perplex.ethz.ch/). All of the spinel models treat the MgAl$_2$O$_4$–FeAl$_2$O$_4$ join as ideal in volume. Only one of the available thermodynamic databases includes a chrome-bearing component for spinel (Klemme et al. 2009). The corresponding solution model for MgO–FeO–Al$_2$O$_3$–Cr$_2$O$_3$ spinels adopts the formulation of Oka et al. (1984) for asymmetric excess volume due to Al^{3+}-Cr^{3+} exchange.

Data sources

The American Mineralogist Crystal Structure Database (AMCSD) (Downs and Hall-Wallace 2003) provides a comprehensive collection of published X-ray and neutron diffraction refinements of cell volume and site occupancy; we fit the entire database of spinels with $Fd3m$ space group symmetry in the system FeO–MgO–Fe$_2$O$_3$–Cr$_2$O$_3$–Al$_2$O$_3$–TiO$_2$ (Figs. 1, 2). The very oldest studies (Bragg 1915; Passerini 1930; Verwey and Heilmann 1947) and all other spinels in the database—e.g., tetragonal spinels, franklinites, trevorites, and maghemites—were excluded. In addition, we found these data sources for refined site occupancy data not in the AMCSD: Carbonin et al. (1996),

Della Giusta et al. (1996), Princivalle et al. (1999), and Levy et al. (2004). Furthermore, a few sources are available that provide cell parameter based on powder XRD and
electron microprobe analysis of an experimental charge (Doroshev et al. 1997; Brey et al. 1999; Girnis et al. 2003). We used these data by assuming the specimen was quenched from an equilibrium ordering state at experimental conditions and applying the ordering model built into MELTS (Sack and Ghiorso 1991a, b). This approximation introduces two potential sources of error: (a) the temperature recorded by the true ordering state may be lower than the experimental one and (b) there is an inherent uncertainty associated with the MELTS ordering model (e.g., a consequence of the simplistic spinel volume model in MELTS is that the predicted ordering state is independent of pressure). Both errors are probably systematic and the restricted compositional and P–T ranges mean that the data are likely to be affected to a similar degree. Hence, although the measurements were given slightly less weight during the regression than those with accompanying site occupancy data, their inclusion is reasonable and the model fit is not substantially affected by the absence of measured site occupancies.

Our final model is calibrated using a total of 832 experiments. The compositional and P–T coverage of the data is summarized in Table 1. All references for data used in model calibration are listed in Electronic Supplementary Material 1. Experimental conditions, observed cell parameters, and cation site occupancies are given in Electronic Supplementary Material 2. There are a number of compositional gaps in the volume calibration database. Some are due to immiscibility (Barnes and Roeder 2001; Pascal et al. 2011), and some correspond to spinels found in lunar samples too precious for analysis by XRD (Haggerty 1971). Still others are filled by studies of binary spinels for which site occupancies were not characterized (Golla-Schindler et al. 2005; Mattioli et al. 1987; Muan et al. 1972; Robbins et al. 1971; Wechsler et al. 1984; Woodland et al. 2009; Zhao et al. 1998). Unlike the experimental studies discussed above, none of these measurements could be incorporated into the calibration dataset. Either the equilibration temperature could not be estimated sufficiently accurately or the measured volume trend disagreed with a reliable data source for one or other pure phase end member, even when ordering state could not be a factor. Hence, inclusion of these studies would have had a detrimental effect on the calibrated standard-state volumes. Nevertheless, the data were useful for comparison and (once allowance was made for any discrepancies in the end-member volume contributions) provided a valuable independent test of the newly calibrated model.

We assume that all Ti4+ (Wechsler et al. 1984; Sack and Ghiorso 1991a; Bosi et al. 2009) and all Cr3+ (Dunitz and Orgel 1957; Sack and Ghiorso 1991b) cations occupy the octahedral site in spinels. This choice is supported by the calibration dataset: of the data considered, only one MgCr2O4 (Tabira and Withers 1999), one Fe2TiO4 (Stout and Bayliss 1980), and one Mg2TiO4 (O’Neill et al. 2003) are reported as having 2 % or more of Ti4+ or Cr3+ partitioned onto the tetrahedral site. Thus, we assigned any reported tetrahedral Ti4+ and Cr3+ to the octahedral site, moving Mg2+ as needed to compensate for site occupancy and charge. For example,

\[X_{\text{Mg}^{2+}}^{[4]} = X'_{\text{Mg}^{2+}}^{[4]} + \frac{1}{2} X_{\text{Cr}^{3+}}^{[4]} \]

\[X_{\text{Mg}^{2+}}^{[6]} = X'_{\text{Mg}^{2+}}^{[6]} - \frac{1}{2} X_{\text{Cr}^{3+}}^{[6]} \]

\[X_{\text{Cr}^{3+}}^{[6]} = X'_{\text{Cr}^{3+}}^{[6]} + \frac{1}{2} X_{\text{Cr}^{3+}}^{[4]} \]

where left superscript [4] denotes the tetrahedral site, [6] denotes the octahedral site, and X’ represents the proportion of the indicated cation before the adjustment is made. The same relationships hold for the substitution of Ti4+ by replacing Cr3+ with Ti4+ in Eq. 1. Elements not included in our system were projected onto major cations of similar size and charge: Mn2+ and Mn3+ were assigned to Fe2+ and Fe3+, respectively; the divalent cations Zn2+, Ni2+, and Co2+ were distributed proportionally over Mg2+ and Fe2+; V3+ was projected onto Fe3+; and Si4+ was cast into Ti4+.
To limit the data used to fit the model to those spinels that are applicable to terrestrial or lunar mafic and ultramafic rocks, we developed a set of exclusion criteria. All experiments that contained vacancies on either crystallographic site were excluded. Likewise, experiments that contained Ca\(^{2+}\) were not included in the calibration, because even very small amounts of octahedral Ca\(^{2+}\) produced systematic errors in the model. We established a 5% site occupancy threshold for the other minor elements, that is, we rejected experiments that reported greater than 5% occupancy in either site of Mn\(^{2+}\), Mn\(^{3+}\), Ni\(^{2+}\), Zn\(^{2+}\), Co\(^{2+}\), V\(^{3+}\), or Si\(^{4+}\). We noted no evidence that Jahn–Teller distortion affects the volume at the level of Mn\(^{3+}\) substitution allowed (Ishii et al. 1972). In order that the projected composition of all calibrated spinels conform to the stoichiometry of the chosen model end members, within a reasonable tolerance, we filtered out any site occupancy data with reported site totals differing from unity by more than \(\pm 0.01\) and any data with total cation charge greater than +8.03 or less than +7.97 per formula unit.

One drawback with the chosen dataset is the lack of reliable error estimates for the observed and modeled molar volumes, which makes it difficult to weight the calibration data in any meaningful way. Errors on lattice parameters are estimated when data are curated in the AMCSD and suggest that the measurement precision values reported in the original sources can be misleadingly small. Room temperature fluctuations have a negligible effect on the total error, naturally, but inter-laboratory differences can be significant for in situ experiments at high-\(P, T\); several of the high-\(T\) and high-\(P\) measurements have no reported bounds. Uncertainties associated with site occupancy determinations are almost never quantified but must vary depending on the type of sample (synthetic or natural), composition (end-member, binary, etc.), and measurement procedure. O’Neill and Dollase (1994) compared the effect of different refinement procedures on the final site occupancy distributions and several authors (e.g., Mattioli et al. 1987; O’Neill et al. 1992) have studied the effect of stoichiometry, or lack thereof, on molar volume. Given that it was impossible to come up with an automated strategy for assigning error estimates, we instead weighted all data equally but paid more attention to end-member and binary compositions when deciding between conflicting data or identifying outliers. This approach was later modified slightly to use weighted nonlinear least squares, where all data were assigned the same nominal standard error except those requiring the MELTS ordering model (Doroshev et al. 1997; Brey et al. 1999; Girnis et al. 2003) which were given a doubled value. Reasons and details are given above and in the electronic appendix (Electronic Supplementary Material 3).

Model formulation

For fitting molar volume data to our model, the data must first be recast in a consistent manner into the representation of composition and ordering state we adopted. Most of the

<table>
<thead>
<tr>
<th>Composition</th>
<th>Total experiments</th>
<th>Ambient-(P, T)</th>
<th>High-(P) (P) range (GPa)</th>
<th>High-(T) (T) range (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>End members</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgAl(_2)O(_4)</td>
<td>151</td>
<td>48</td>
<td>21</td>
<td>0.6–29</td>
</tr>
<tr>
<td>FeCr(_2)O(_4)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Fe(_2)TiO(_4)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Fe(_3)O(_4)</td>
<td>55</td>
<td>9</td>
<td>46</td>
<td>0.02–11.11</td>
</tr>
<tr>
<td>FeAl(_2)O(_4)</td>
<td>40</td>
<td>23</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>MgCr(_2)O(_4)</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>MgFe(_2)O(_4)</td>
<td>69</td>
<td>24</td>
<td>28</td>
<td>0.11–34.39</td>
</tr>
<tr>
<td>Mg(_2)TiO(_4)</td>
<td>53</td>
<td>2</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Binaries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgAl(_2)O(_4)–FeAl(_2)O(_4)</td>
<td>14</td>
<td>14</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>FeAl(_2)O(_4)–Fe(_3)O(_4)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Fe(_2)TiO(_4)–Fe(_3)O(_4)</td>
<td>18</td>
<td>18</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>MgAl(_2)O(_4)–MgFe(_2)O(_4)</td>
<td>68</td>
<td>15</td>
<td>4</td>
<td>1–4</td>
</tr>
<tr>
<td>MgAl(_2)O(_4)–MgCr(_2)O(_4)</td>
<td>194</td>
<td>87</td>
<td>34</td>
<td>4.4–8.03</td>
</tr>
<tr>
<td>FeCr(_2)O(_4)–MgCr(_2)O(_4)</td>
<td>13</td>
<td>13</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Fe(_3)O(_4)–MgFe(_2)O(_4)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Multi-component</td>
<td>146</td>
<td>146</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Total</td>
<td>832</td>
<td>410</td>
<td>133</td>
<td>289</td>
</tr>
</tbody>
</table>
data we use are given in the AMCSD in the form of cation mole fractions on the tetrahedral and octahedral sites. For this kind of data, we first transformed the molar cation proportions into the following set of linearly independent compositional variables:

\[X_{sp} = [4] X_{Mg^{2+}} + 2[6] X_{Mg^{2+}} \]
\[X_{ch} = [6] X_{Cr^{3+}} \]
\[X_{uv} = 2[6] X_{Ti^{4+}} \]
\[X_{mt} = \frac{1}{2} \left([4] X_{Fe^{3+}} + 2[6] X_{Fe^{3+}} \right) \]

plus the dependent closure variable

\[X_{hc} = 1 - X_{sp} - X_{ch} - X_{uv} - X_{mt}, \]

where sp = MgAl2O4, ch = FeCr2O4, uv = Fe2TiO4, mt = Fe3O4, and hc = FeAl2O4. The cation-ordering variables are:

\[s_0 = [4] X_{Mg^{2+}} - 2[6] X_{Mg^{2+}} \]
\[s_1 = \frac{1}{2} \left([6] X_{A1^{1+}} - [4] X_{A1^{1+}} \right) \]
\[s_2 = \frac{1}{2} \left([6] X_{Fe^{3+}} - [4] X_{Fe^{3+}} \right). \]

Sack and Ghiorso (1991a) tabulate the relationships between these compositional and ordering parameters for various end-member and binary spinels. See the spinel volume web tool (http://magmasource.caltech.edu/calculator/) described below for more general bounds that the composition of a spinel implies for the range of possible values of the order parameters. Note that Sack and Ghiorso (1991a, b) originally included an order parameter for Cr that was later abandoned and that they numbered the order parameters 1–4; their \(s_4 \) corresponds to our \(s_2 \). Although general dependence of volume on order state was considered, in practice only MgAl2O4-rich, MgFe2O4-rich, and FeAl2O4-rich compositions show order dependence of volumes at fixed composition.

Taking into account the site occupancy restrictions:

expressions mapping mole fractions of cations into our chosen compositional and ordering variables may be readily derived.

The previously mentioned experiments of Doroshev et al. (1997), Brey et al. (1999), and Girnis et al. (2003) were quenched with an unknown ordering state. In order to use this data, we converted the reported oxide wt% into moles of cations. Note that the Fe\(^{2+}\)/Fe\(^{3+}\) ratio is calculated based on stoichiometry for this type of data, that is, the total anion charge is \(-8\), so the total charge of the cations must equal \(+8\). We assumed the experimental \(P \) and \(T \) conditions represented conditions corresponding to equilibrium ordering state, and applied the MELTS ordering model (Sack and Ghiorso 1991b). Once we recast the electron microprobe data into the site occupancy model, we are able to calculate Eqs. 2a–2e and proceed as above. Measurements not included in the calibration dataset but used for comparison (e.g., Golla-Schindler et al. 2005) were treated in a similar way; reported synthesis conditions or annealing temperatures were used if available and, where necessary, forward models were repeated for a range of plausible equilibrium temperatures.

Standard-state end-member properties included in our model are molar volume at reference pressure \(P_0 = 1 \) bar and reference temperature \(T_0 = 298.15 \) K (\(V_0^0 \)), coefficient of thermal expansion (\(\alpha \)), isothermal bulk modulus (\(K_{oT} \)), and the pressure derivative of the bulk modulus (\(K' \)). The general expression for the molar volume of a crystalline solid is:

\[V = V_{ideal} + V_{excess}, \]

where excess volume of mixing is determined by an appropriate mixing model. The expression for \(V_{ideal} \) is a function of pressure, temperature, and composition:

\[V_{ideal} = \sum_i X_i V_i(P,T) \]

where \(i = [sp, ch, uv, mt, hc] \). \(V_i(P,T) \) is found by using Newton’s method to search along the high-\(T \) Vinet equation of state,

\[P = 3K_{oT,j} \left(\frac{V_i}{V_0^0} \right)^{-2/3} \left[1 - \left(\frac{V_i}{V_0^0} \right)^{1/3} \right] \exp \left\{ \frac{3}{2} \left(K'_j - 1 \right) \right\} \times \left[1 - \left(\frac{V_i}{V_0^0} \right)^{1/3} \right]^{\alpha_j K_{oT,j}(T - T_0) + 1}. \]

The Vinet formalism is applied to each end-member composition at the \(P \) and \(T \) of interest, and the resulting volumes are mixed to construct the ideal term. Initial estimates of \(V_0^0, \alpha, K_{oT} \), and \(K' \) for each end member came from the provisional xMELTS spinel volume model (Ghiorso 2004b) except that \(K_{oT} \) values were taken from ultrasonic studies where available.

During model calibration, we considered excess volume terms of the symmetric regular solution form \(W_{ij} X_i X_j \), asymmetric regular solution form \(W_{ij} X_i X_j + d W_{ij} X_i X_j \), \((X_i - X_j) \), and special terms dependent on ordering parameters. We allowed terms to depend on \(P \) and \(T \) as a way to encode non-ideal mixing of compressibility or thermal expansion without resorting to use of explicitly \(P \)- and \(T \)-dependent expressions for \(K_{oT}, K' \), or \(\alpha \).
Ultimately, however, we found that such P- and T-dependent parameters were not justified by the data.

Although it can be used in any context where a model of spinel molar volume is required, the present model is designed to be compatible with the activity-composition and ordering model of Sack and Ghiorso (1991a, b), which accounts for the standard state, exchange, reciprocal, and excess energies among the same set of independent and dependent end members adopted here and computes equilibrium site occupancy by Gibbs energy minimization. In formulating an extension to describe molar volumes, we begin of course by adopting the Sack and Ghiorso set of independent end members to define the standard-state contribution to the volume as a function of pressure and temperature. However, in modeling the excess and ordering volumes, we have a choice. We might adopt a parameter set strictly parallel to the parameters of the Sack and Ghiorso enthalpy model or we might formulate a new model guided by the volume data available. The former approach has some theoretical justification in that non-ideal enthalpy and volume of solutions both arise from the same microscopic effect, namely mismatch of ionic radii of substituting cations. However, the Sack and Ghiorso enthalpy model has 32 parameters, which turns out to be many more than are needed to describe the non-ideal component of volume behavior. The formulation of the enthalpy model may not yield a stable minimum set of parameters when fit to the volume data in a conservative way. In practice, the volume data set can be fit with a much smaller set of parameters with a minimum of parameter correlation if we choose a different formulation for excess volumes and volumes of ordering. Since our interest is in creating the most useful and reliable model for use in macroscopic thermodynamic applications, we have therefore adopted a new formulation for the non-ideal parts of our volume model, not parallel to the formulation of the enthalpy and ordering model, even though the result may provide less insight into the microscopic origin of the excess volumes.

Model calibration summary

A full description of the strategy for calibration, including parameters deemed significant or negligible and data used or excluded, is provided in the electronic appendix (Electronic Supplementary Material 3). In summary, the standard-state end-member properties, ordering terms, and contributions to selected symmetric regular solution terms were first calibrated to ambient, high-T, and high-P data for all end members, including the dependent end members MgCr$_2$O$_4$, MgFe$_2$O$_4$, and Mg$_2$TiO$_4$. The provisional regular solution terms accounted for the volume of reaction for the formation of the dependent end members by Fe–Mg exchange and were constructed in a way that was consistent with the data for binary and ternary spinels. Then, the remaining ambient pressure and temperature data were used to calibrate additional contributions to V_{excess} as a function of composition. Finally, the small number of high-T and high-P data for intermediate compositions were checked to see whether they required any revisions to the model, which they did not.

We have developed a calibration scheme that is able to directly query a MySQL database containing phase equilibrium, site occupancy, and volume data. The calibration scheme is written in MATLABSM and uses the MATLAB-MySQL interface written by Robert Almgren (http://www.mathworks.com/matlabcentral/fileexchange/8663-mysql-database-connector). For the database, we adapted the schema from the Library of Experimental Phase Relations (LEPR) (Hirschmann et al. 2008) to incorporate the cell parameters and site occupancy data, with suitable metadata, and made a number of internal changes that reflect the different ways in which the two databases are updated and accessed. The MATLAB-generated MySQL queries allow us to test the effect of including or excluding a particular data source or type of experiment (e.g., heated in situ vs. annealed and quenched) with minimal effort and without the need for intermediate files.

Three terms describe the observed linear volume dependence on each of the cation-ordering variables s_0, s_1, and s_2 (Fig. 3). The adopted standard states for MgAl$_2$O$_4$ and FeAl$_2$O$_4$ are sufficiently close to normally ordered (e.g., $s_1 = 0.99998$ for FeAl$_2$O$_4$) that we assume them to be perfectly so. In order for the s_0-dependent term to vanish at Mg-free compositions, we used the form $(s_0 - 1)/2$, multiplied by X_{sp}, as this represents total Mg cations per formula unit. Likewise, we multiplied the s_1-dependent term by total Al, given by $2(X_{\text{sp}} + X_{\text{hcp}})$. End-member Fe$_2O_3$ is approximated as perfectly inversely ordered and the s_2 term is multiplied by total Fe$^{3+}$, which is simply $2X_{\text{mss}}$ (see Eq. 7). The resulting ordering-composition cross-terms account for nearly all the excess volume along several key binaries: notably Fe$_2$O$_3$–Fe$_2$TiO$_4$ (Bosi et al. 2009) and MgAl$_2$O$_4$–FeAl$_2$O$_4$ (Andreozzi and Lucchesi 2002).

That no additional excess volume terms were required on the MgAl$_2$O$_4$–FeAl$_2$O$_4$ join was particularly fortuitous as it meant that the Cr$^{3+}$-, Fe$^{3+}$-, and Ti$^{4+}$-bearing spinel subsystems could be considered separately when choosing between candidate parameters. This process is described in more detail in the electronic appendix. Briefly, we chose the minimum number of parameters that could reasonably describe the ordering-adjusted volume surface for each reciprocal square (e.g., MgAl$_2$O$_4$–MgCr$_2$O$_4$–FeCr$_2$O$_4$–FeAl$_2$O$_4$) before moving our attention to other joins, such as Fe$_2$O$_3$–Fe$_2$TiO$_4$ and Fe$_2$O$_3$–FeCr$_2$O$_4$, and to multicomponent spinels.
(Lenaz et al. 2004), which showed little or no deviation from ideality once any ordering effects were subtracted. This strategy meant that certain combinations of solution parameters (e.g., $W_{mt-sp} - W_{mt-hc}$) were constrained by the end-member data. In the second stage calibration, end-member properties and ordering parameters were fixed; instead, we adjusted the existing excess volume terms (i.e., W_{sp-ch}, W_{hc-ch}, W_{mt-sp}, and W_{mt-hc}) and introduced two new terms (dW_{sp-ch} and W_{ch-mt}) in a way that did not disturb the fit for the dependent end members.

We used the Bayesian information criterion (BIC) (Schwarz 1978), along with analysis of the reduced χ^2 statistic, to measure how efficiently our parameterized model predicts the data. Since we do not have information on measurement error for site occupancies, we are required to estimate the error in observed volume for calculating reduced χ^2. The BIC assigns a penalty term that is based on the complexity, or number of parameters, of the model. The formula is $BIC = -2 \ln(L) + k \ln(n)$, where $\ln(L)$ is the optimized log-likelihood function associated with a particular model, k is the number of model parameters, and n is the number of observations associated with $\ln(L)$. By applying the BIC iteratively to the excess volume parameters and analyzing reduced χ^2, for example, all excess terms involving X_{0v} were found to be insignificant.

In all stages of the model, each of the five explicit end members has a pure component equation of state described by four parameters: V^0, a, K_{cr}, and K' (Tables 2, 3, 4). The additional parameters of the preferred final model include six excess terms along compositional binaries and three order-dependent terms. The values of the excess volume and order-dependent parameters are given in Table 5. The full expression of the model is:

$$V(X, T, P, s) = \sum_i X_i V_i(T, P)$$

$$+ W_{hc-ch}X_{hc}X_{ch} + W_{ch-mt}X_{hc}X_{mt}$$

$$+ W_{sp-ch}X_{sp}X_{ch} + dW_{sp-ch}X_{sp}X_{ch}(X_{sp} - X_{ch})$$

$$+ W_{mt-hc}X_{mt}X_{hc} + W_{mt-sp}X_{mt}X_{sp}$$

$$+ \frac{(s_0 - 1)}{2} W_{0v}X_{sp} + 2(s_1 - 1)W_{s1}(X_{sp} + X_{hc})$$

$$+ 2s_2 W_{s2}X_{mt}. \quad (7)$$

This model fits virtually all of the data to within 0.02 J/bar/mol, or better than 0.5 % in volume (Figs. 4, 5), with a few exceptions for the studies of Antao et al. (2005a, b), Finger et al. (1986), Haavik et al. (2000), and Méducin et al. (2004) (see electronic appendix for exclusion criteria for these studies). The mean of the absolute values of the residuals for calibrated data is 0.0038 J/bar/mol and the root mean squared error is 0.0053 J/bar/mol. The goodness-of-fit of the model is displayed in Fig. 4, where observed molar volume is plotted first against the volume

Fig. 3 Order dependence of observed volume versus ordering term for a s_0, b s_1, and c s_2. The order dependence for s_0, for example, is calculated by subtracting the model V_{ideal} and all other model terms not dependent on s_0 from the observed volume, V_{obs}. The linearity of the data shows the simple form of the order dependence of the data and the slope of the linear trend is proportional to the W_{0v} parameter (see Eq. 7). The corresponding calculations were done for s_1 and s_2. The solid lines are the model order dependences, plotted over the relevant range of ordering states.
model with asymmetric excess on the Fe$_3$O$_4$–Fe$_2$TiO$_4$ join used in current versions of MELTS (Fig. 4a), then against an ideal volume model using the refined end-member equation of state coefficients from Tables 2, 3, 4 (Fig. 4b), and finally against the model volume from the full form of Eq. 7 (Fig. 4c). When compared with the ideal model (Fig. 4b), data for dependent end members MgCr$_2$O$_4$ and Mg$_2$TiO$_4$, respectively. Likewise, there is some correlation between V^o and ordering parameters for certain end members. As expected (see the electronic appendix), many of the purely compositional excess parameters are strongly correlated (e.g., W_{sp-ch} with W_{hc-ch}, and W_{mt-sp} with W_{mt-hc}) and are well-defined only in a joint sense. These observations emphasize that the calibrated parameters should only be used in the context of the full model derived here and that they may not be optimal descriptions of sub-systems if ideal and excess terms are separated. As noted above, the calibration data vary in coverage and quality and full estimates of measurement uncertainties are sparse, which means confidence bounds calculated using random sampling are probably unrealistically wide. Large uncertainties in the fit parameters do not necessarily feed into large uncertainties in the volumes calculated using the calibrated model, once the high degree of correlation between parameters is accounted for properly (Powell and Holland 1985). However, as the Vinet equation must be solved iteratively at each stage of the calculation in this case, such sophisticated propagation of uncertainties is neither straightforward nor likely to be that informative. Instead, for comparison, we obtained a more conservative confidence bound for each parameter, again using the bootstrapping technique but holding all other parameters at their optimal values; these uncertainties are reported in Tables 2, 3, and 5.

Table 2. Optimized standard-state end-member molar volume for given ordering state

<table>
<thead>
<tr>
<th>End-member</th>
<th>V^o (J/bar/mol)</th>
<th>1σ</th>
<th>Ordering state</th>
<th>s_0, s_1, s_2</th>
<th>a (Å)</th>
<th>ρ (kg m$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgAl$_2$O$_4$</td>
<td>3.9722</td>
<td>1.7 \times 10$^{-4}$</td>
<td>Normal</td>
<td>[1, 1, 0]</td>
<td>8.0808</td>
<td>3,582</td>
</tr>
<tr>
<td>FeCr$_2$O$_4$</td>
<td>4.4243</td>
<td>3.9 \times 10$^{-4}$</td>
<td>Normal</td>
<td>[0, 0, 0]</td>
<td>8.3765</td>
<td>5,059</td>
</tr>
<tr>
<td>Fe$_2$TiO$_4$</td>
<td>4.6873</td>
<td>3.1 \times 10$^{-4}$</td>
<td>Normal</td>
<td>[0, 0, 0]</td>
<td>8.5393</td>
<td>4,769</td>
</tr>
<tr>
<td>Fe$_3$O$_4$</td>
<td>4.4553</td>
<td>5.5 \times 10$^{-4}$</td>
<td>Inverse</td>
<td>[0, 0, 0]</td>
<td>8.3960</td>
<td>5,197</td>
</tr>
<tr>
<td>FeAl$_2$O$_4$</td>
<td>4.0871</td>
<td>2.0 \times 10$^{-4}$</td>
<td>Normal</td>
<td>[0, 1, 0]</td>
<td>8.1580</td>
<td>4,253</td>
</tr>
</tbody>
</table>

* Bootstrap estimation of s.d. for V^o, holding other parameters at optimal values

Table 3. Standard-state end-member coefficient of thermal expansion

<table>
<thead>
<tr>
<th>End-member</th>
<th>α (10$^{-5}$) (K$^{-1}$)</th>
<th>1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgAl$_2$O$_4$</td>
<td>2.4413</td>
<td>3.8 \times 10$^{-8}$</td>
</tr>
<tr>
<td>FeCr$_2$O$_4$</td>
<td>2.1691</td>
<td>–</td>
</tr>
<tr>
<td>Fe$_2$TiO$_4$</td>
<td>3.3458</td>
<td>4.3 \times 10$^{-8}$</td>
</tr>
<tr>
<td>Fe$_3$O$_4$</td>
<td>3.3376</td>
<td>2.1 \times 10$^{-7}$</td>
</tr>
<tr>
<td>FeAl$_2$O$_4$</td>
<td>2.6431</td>
<td>2.7 \times 10$^{-8}$</td>
</tr>
</tbody>
</table>

* Bootstrap estimation of s.d. for α, holding other parameters at optimal values

Table 4. Bulk moduli and pressure derivatives of end members

<table>
<thead>
<tr>
<th>End-member</th>
<th>K_{CT} (GPa)</th>
<th>K'</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgAl$_2$O$_4$</td>
<td>190.8a</td>
<td>6.77a</td>
</tr>
<tr>
<td>FeCr$_2$O$_4$</td>
<td>203.3b</td>
<td>6.5b</td>
</tr>
<tr>
<td>Fe$_2$TiO$_4$</td>
<td>181d</td>
<td>5.5d</td>
</tr>
<tr>
<td>Fe$_3$O$_4$</td>
<td>181e</td>
<td>5.5e</td>
</tr>
<tr>
<td>FeAl$_2$O$_4$</td>
<td>210.3f</td>
<td>5.5d</td>
</tr>
</tbody>
</table>

* From Levy et al. (2003)

* From Doraiswami (1947)

* Constrained using data of Fan et al. (2008) (see appendix)

* Assumed to be equal to that of Fe$_3$O$_4$ (see text)

* From Nakagiri et al. (1986)

* From Wang and Simmons (1972)
A few aspects of the model remain underconstrained by data. There are neither ultrasonic velocities nor in situ high-\(P\) volume data for Ti-bearing compositions. We are forced to assume that the \(K_{\text{OT}}\) and \(K_{\text{O}}\) for \(\text{Fe}_2\text{TiO}_4\) are equal to those of \(\text{Fe}_3\text{O}_4\) (Table 4). Given the low compressibility of spinels and the small Ti\(^{4+}\) concentrations in most spinels (and in particular in all the spinels that will be used for calibration of models of coexisting phases like garnet and pyroxene), this assumption is unlikely to have any significant effect on free energies within the pressure range of the spinel stability field. In addition, the value of \(a\) for \(\text{FeCr}_2\text{O}_4\) was not varied during the calibration process. However, when the final model is used to calculate the effective \(a\) for a chromian spinel with composition \(\text{MgAl}_{0.8}\text{Cr}_{1.2}\text{O}_4\), the value agrees with the one obtained from the lower temperature measurements (i.e., the ones made below the blocking temperature) of Levy and Artioli (1998, see Fig. 3a) to within \(5.4 \times 10^{-7}\) K\(^{-1}\). In the absence of high-\(T\) structural refinements for \(\text{FeCr}_2\text{O}_4\), we believe that the value of \(a\) adopted is the best estimate currently available.

Discussion

Model comparison

A comparison between our model and the model of Brey et al. (1999) is shown in Fig. 6. The gray surface in Fig. 6a shows the excess volume of the Brey et al. model in the \(\text{MgAl}_2\text{O}_4-\text{MgCr}_2\text{O}_4-\text{FeCr}_2\text{O}_4-\text{FeAl}_2\text{O}_4\) reciprocal square, that is, the end-member contributions have been subtracted from the volume surface. The data plotted have also had the ideal end-member contributions to their volumes subtracted. The surface in Fig. 6b shows our proposed model in the same composition space as the Brey et al. model. Here, contributions from the end members and from our model ordering terms have been subtracted from model and

Table 5 Model parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(W_{\text{hc-ch}})</th>
<th>(W_{\text{ch-mt}})</th>
<th>(W_{\text{sp-ch}})</th>
<th>(dW_{\text{sp-ch}})</th>
<th>(W_{\text{mt-hc}})</th>
<th>(W_{\text{mt-sp}})</th>
<th>(W_{\text{0}})</th>
<th>(W_{\text{1}})</th>
<th>(W_{\text{2}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (J/bar/mol)</td>
<td>0.0108</td>
<td>0.0715</td>
<td>0.0578</td>
<td>0.0489</td>
<td>0.0833</td>
<td>0.1020</td>
<td>-0.0692</td>
<td>0.0264</td>
<td>0.1035</td>
</tr>
</tbody>
</table>

\(\sigma^a\)

\(a\) Bootstrap estimation of s.d. for each parameter, holding all other parameters at optimal values.

Fig. 4 Model volume versus measured volume. **a** Model results using spinel volume model currently implemented in MELTS (shown in box); **b** ideal model volume results after fitting of end members. Model results from **a** shown grayed out; **c** final model results. Model results from **a** shown grayed out data. That the data appear smoother in Fig. 6b than in Fig. 6a shows that there is a distinct ordering effect on the volume that cannot be mapped into a purely compositional term (c.f. the \(\text{Fe}_3\text{O}_4-\text{Fe}_2\text{TiO}_4\) join discussed below). Both models give similar fits to the data of Brey et al. and Doroshev et al. (1997) (diamonds), but the molar volume...
of FeCr$_2$O$_4$ is more tightly constrained in our model due to the availability of data from Lenaz et al. (2004). Unlike Brey et al., we explicitly account for the dependent end member (MgCr$_2$O$_4$ in our model; FeAl$_2$O$_4$ in theirs) so our model predicts a warped volume surface. Finally, by making the asymmetrical excess volume term a function of X_{sp} and X_{ch}, rather than X_{Cr} and X_{Al}, our model is able to provide a much better fit to the rest of the data in the composition space (circles in Fig. 6).

The surface in Fig. 7a shows our model for spinels in MgAl$_2$O$_4$–MgFe$_2$O$_4$–Fe$_3$O$_4$–FeAl$_2$O$_4$ space; again, the end-member and ordering contributions have been subtracted from the model surface and the data. The model along the MgAl$_2$O$_4$–Fe$_3$O$_4$ binary is plotted in Fig. 7b, along with the model of Mattioli et al. (1987); the magnitudes of the positive, symmetric excess terms of the two models along this join are similar, and differences of up to ~ 0.004 J/bar are due to different standard-state volumes for Fe$_3$O$_4$. The ordering state of Fe$_3$O$_4$ is particularly hard to quench, since it involves only electron exchange rather than cation mobility; hence, in Fig. 7b, we show curves with and without the modeled volume contribution due to ordering. A significant part of the asymmetry observed by Mattioli et al. on this join is apparently attributable to the composition-dependent closure temperature of the ordering reaction. Once these systematic differences in order state and measured volumes for compositions approaching pure Fe$_3$O$_4$ are accounted for, the data do not seem to justify an asymmetric excess volume term like the one used by Mattioli et al. The calibration data of Nakatsuka et al. (2004) (MgAl$_2$O$_4$–MgFe$_2$O$_4$) and the comparison data of Golla-Schindler et al. (2005) (FeAl$_2$O$_4$–Fe$_3$O$_4$) also support the simpler symmetric formalism (Fig. 7a).

The current spinel volume model formulation in MELTS and pMELTS includes asymmetric excess volume terms for the Fe$_3$O$_4$–Fe$_2$TiO$_4$ binary (Sack and Ghiorso 1991a), whereas in our model, the asymmetry comes solely from the ordering contribution to the volume (Fig. 8). The asymmetry in the volume variation is subtle, though well resolved by the data. The strong preference of Ti$^{4+}$ for the octahedral site limits the configurational freedom along this join but the Mössbauer spectroscopic measurements of Bosi et al. (2009) indicate a sigmoidal variation in s_2 with X_{uv}. Deviations from the Akimoto (1954) ordering model (equivalent to setting $s_2 = 0$) have the same sense as the deviations from Vegard’s Law, so it is not surprising that introducing an ordering dependence to the volume model may reduce the need for asymmetric interaction.

![Model residuals versus measured volume. Gray diamonds are samples measured at ambient-P, T. Open circles are samples measured at high-T in situ, and black squares are samples measured at high-P in situ.](image-url)

 ![Model volumes and data in the MgAl$_2$O$_4$–MgCr$_2$O$_4$–FeCr$_2$O$_4$–FeAl$_2$O$_4$ reciprocal square. End members are labeled at the corners. A Gray surface is the model of Brey et al. (1999) with end-member contributions subtracted. Diamonds are the data of Brey et al. (1999) and Doroshev et al. (1997); open circles are the rest of the room-T, P calibration dataset with ≤ 5% magnetite or ulvöspinel component; b Gray surface is the model presented in this work, with end-member and ordering contributions subtracted. Symbols are the same as in (a).](image-url)
However, inasmuch as the ordering terms were calibrated only with data for pure MgFe$_2$O$_4$ (s_0 and s_2), MgAl$_2$O$_4$ (s_0 and s_1), and FeAl$_2$O$_4$ (s_1), the result that excess volume along the Fe$_3$O$_4$–Fe$_2$TiO$_4$ binary may be completely explained in this way is unexpected. Although we cannot properly constrain the nature of Ti$^{4+}$ mixing in spinel, the notion that same-site substitution is nearly ideal for volume (i.e., excess volumes of mixing are due to ordering among the other cations) is supported by the few data available within the Ti-bearing subsystem.

The MELTS ordering model of Sack and Ghiorso (1991a, b) predicts a cation distribution that is independent of pressure because the accompanying volume model is ideal. As shown here, ordering effects can successfully explain all of the observed symmetric excess volumes of mixing on the MgAl$_2$O$_4$–Fe$_3$O$_4$ join (Andreozzi and Lucchesi 2002), and the MgAl$_2$O$_4$–Mg$_2$TiO$_4$ and FeAl$_2$O$_4$–Fe$_2$TiO$_4$ binaries (Muan et al. 1972), as well as the aforementioned variation along Fe$_3$O$_4$–Fe$_2$TiO$_4$ (Bosi et al. 2009). The ordering parameters in our model also capture most of the mixing behavior along the Fe$_3$O$_4$–FeCr$_2$O$_4$ join (Robbins et al. 1971; Woodland et al. 2009) (Fig. 9). In our model, the excess volume term along this join is symmetric and constrained by data elsewhere in the composition space; introduction of the s_2 ordering term accounts for the asymmetry in the data (which were not included in the calibration). Furthermore, when the MELTS ordering model (Sack and Ghiorso 1991a, b) is updated to use our volume expression in the self-consistent calculation of ordering state by Gibbs energy minimization, it successfully predicts the high-P, T results of Antao et al. (2005b) for MgFe$_2$O$_4$ (Fig. 10). Note that the Antao et al. study was not included in the calibration dataset (see electronic...
The asymmetry of the data, which were not included in the calibration, is captured by the s_2 ordering term. The asymmetry of the data, which were not included in the calibration, is captured by the s_2 ordering term. This binary is modeled with a symmetric excess term. The asymmetry of the data, which were not included in the calibration, is captured by the s_2 ordering term.

The general role of order–disorder reactions in mineral volumes is strongly order-dependent. Hazen and Navrotsky argue that such behavior is most pronounced when there are changes in ionic charge and coordination number, such that order–disorder reactions in minerals like olivine and orthopyroxene (mostly involving Fe$^{2+}$ and Mg on crystallographically distinct octahedral sites) should show smaller effects than those documented here for spinel. The pyroxene model of Sack and Ghiorso (1994a) includes an ordering contribution to the volume.

Fig. 9 Model volume (black curve) along the FeCr$_2$O$_4$–Fe$_3$O$_4$ binary, plotted with the data of Robbins et al. (1971) (open circles) and Woodland et al. (2009) (gray circles). The model curve is calculated using the MELTS ordering routine and the volume model from this work at ambient conditions. This binary is modeled with a symmetric excess term. The asymmetry of the data, which were not included in the calibration, is captured by the s_2 ordering term.

Applications

Klemme (2004) presented experimental reversals for the garnet–spinel transition reaction MgCr$_2$O$_4$ + 4 MgSiO$_3$ = Mg$_3$Cr$_2$Si$_3$O$_{12}$ + Mg$_2$SiO$_4$. Klemme (2004) and Klemme et al. (2009) used the experimental brackets to extract enthalpy of formation and standard-state entropy for the garnet end member knorringite (Mg$_3$Cr$_2$Si$_3$O$_{12}$). Klemme’s (2004) values were designed to be consistent with the thermodynamic dataset of Holland and Powell (1990), whereas Klemme et al. (2009) used a later version (Holland and Powell 1998). When Hamecher et al. (2009) repeated the exercise using the provisional xMELTS thermodynamic dataset (based on Berman 1988, but updated to use the Vinet equation of state), the recovered standard-state entropy of Mg$_3$Cr$_2$Si$_3$O$_{12}$ was significantly lower than the values given by Klemme and co-workers. We tested the effect of our newly calibrated spinel model and found only a small difference with the result from Hamecher et al. (2009). We also used the expressions and thermodynamic data of Holland and Powell (1990, 1998) and retrieved essentially the same values as Klemme et al. (2009). We could reproduce the results of Klemme (2004) but only if we used the volume parameters taken from Klemme et al. (2009) for both Mg$_3$Cr$_2$Si$_3$O$_{12}$ and Mg$_2$Cr$_2$O$_4$, instead of those from Irifune et al. (1982) and Robie et al. (1979) (see Table 3 in Klemme 2004). Hence, while the volume properties of MgCr$_2$O$_4$ spinel clearly influence the location of the spinel–garnet transition in the MgO–Cr$_2$O$_3$–SiO$_2$ system, a final volume model for Cr-bearing garnet is required in order to update the Hamecher et al. (2009) thermodynamic data for Mg$_3$Cr$_2$Si$_3$O$_{12}$.

In the meantime, we can gauge the effect that the new spinel volume model might have on MELTS calculations by extracting a typical lherzolite spinel composition from pMELTS and comparing its molar volume before and after recalibration. At 1,000 °C and 3 GPa, in the Workman and Hart (2005) depleted mantle composition, pMELTS predicts a spinel of composition $\text{Fe}^{2+}_{0.42}\text{Mg}_{0.60}\text{Fe}^{3+}_{0.20}\text{Al}_{0.38}\text{Cr}_{1.40}\text{Ti}_{0.01}\text{O}_4$. The molar volume of this spinel at the applied conditions, calculated with the spinel molar volume model built into all versions of MELTS to date, is...
\[V(X, T, P, s) = 4.3285 \text{ J/bar/mol}, \text{ whereas the model proposed in this work yields } V(X, T, P, s) = 4.3564 \text{ J/bar/mol, a difference } \delta V_{sp} = +0.0279 \text{ J/bar/mol.} \] Although a full internally consistent recalibration of all aspects of the MELTS model is needed to see all the consequences of such a difference, the following simple calculation gives a preliminary sense of the magnitude of possible effects.

The difference in spinel molar volume corresponds to a difference in the model Gibbs free energy of spinel at elevated pressure and hence in the Gibbs free energy change of any reaction involving spinel. Keeping other quantities constant, the resulting displacement in pressure of an equilibrium boundary can be found by comparing the change in Gibbs energy of reaction to the volume change across the reaction. In this way, we can estimate, for example, what change in modeled pressure of the spinel–garnet transition will result when the current model is assimilated into MELTS. This is of some interest, because the match between experimental determinations of this boundary and MELTS calculations performed between 1995 and 2004 turned out to depend on an error in the boundary and MELTS calculations performed between 1995 and 2004 (Hamecher et al. 2009), the model is no longer self-consistent and the spinel–garnet transition that was implemented of the garnet solid solution model that was applied during model calibration (Berman and Koziol 1991). Since that error was fixed (Smith and Asimow 2005), the model is no longer self-consistent and the spinel–garnet lherzolite reaction has been calculated at a pressure as much as 0.8 GPa lower than experimental constraints (Hamecher et al. 2009).

For simplicity, consider the spinel–garnet lherzolite reaction in the simple MgO-Al₂O₃-SiO₂ (MAS) system: MgAl₂O₄ + 2Mg₂Si₂O₆ = Mg₃Al₅Si₃O₁₂ + Mg₂SiO₄. At equilibrium, the Gibbs free energy of reaction (\(\Delta G_{\text{rxn}} \)) is zero, and \(\Delta G_{\text{sp}} \) since we are not changing the properties of the other reactants or products. We can estimate the difference between models in the Gibbs free energy of spinel by making the approximation:

\[
\delta P_T \approx \frac{\delta \Delta G_{\text{rxn}}}{\Delta V_{\text{rxn}}} = -\frac{\delta G_{sp}}{\Delta V_{\text{rxn}}}, \tag{8}
\]

where \(\delta \) refers to the finite change between the two models, and \(\Delta G_{\text{rxn}} = -\delta G_{sp} \) since we are not changing the properties of the other reactants or products. We can estimate the difference between models in the Gibbs free energy of spinel by making the approximation:

\[
\delta G_{sp} = \int_{P_o}^{P} \delta V_{sp} dP \approx \delta V_{sp}(P - P_o), \tag{9}
\]

which, for \(\delta V_{sp} = +0.0279 \text{ J/bar/mol and } P = 3 \text{ GPa}, \) gives \(\delta G_{sp} \approx 383 \text{ J/mol.} \) \(\Delta V_{\text{rxn}} \) for the MAS reaction at 1,000 °C and 3 GPa is \(-0.8243 \text{ J/bar/mol} \) (from the MELTS model, but substituting the new spinel model would make less than a 4% difference in this number). Hence, the approximate displacement in the equilibrium pressure of the reaction between the two models is \(\delta P_T \approx +1.015 \text{ bars} \pm 0.1 \text{ GPa}. \) This difference is in the right direction to address the error in the current MELTS model, but is not enough to explain the entire discrepancy. Recovering a self-consistent model that matches experimental constraints on the pressure of the spinel–garnet lherzolite reaction will require a full recalibration of the garnet and pyroxene activity-composition models, with the best available molar volume models built into the calibration.

Web tool

There may be many applications of a molar volume model for spinel solid solutions beyond the MELTS-based calculations discussed herein. However, the formulation of the present model in terms of MELTS end members and ordering variables may be an impediment to its wide application. Hence, we have provided an online tool (http://magmasource.caltech.edu/calculator/) whereby users may input a spinel either as site occupancy data (that is, both composition and ordering state are measured) or as electron probe data with specified \(P \) and \(T \) (that is, composition is measured but ordering state is not) or as mole fractions of end members (including dependent ones) with \(P \) and \(T. \) The data are processed in the same manner as the calibration data herein and assigned to MELTS end members. If site occupancy is not given, the updated MELTS ordering model (i.e., based on Sack and Ghiorsio (1991a, b) but with the volume model presented here) is used to estimate site occupancy by Gibbs energy minimization. Much like annealed samples within the calibration dataset, there is an option to specify one set of \(P-T \) conditions for the equilibrium ordering state (\(P_S, T_S \)) and another for calculation of the measureable volume (\(P_V, T_V \)). The web tool automatically converts between the various input options, such as wt% oxides and site occupancy, and displays the results. Finally, \(V_{\text{ideal}} \) (as a function of \(P_V \) and \(T_V \)), \(V_{\text{excess}} \) (calculated with site occupancy data, or with the MELS ordering model using \(P_S \) and \(T_S \)), and \(V_{\text{total}} \) (i.e., \(V_{\text{ideal}} + V_{\text{excess}} \)) and, where appropriate, their derivatives with the relevant \(P \) and \(T \) are returned to the user.

Future prospects

Many of the assumptions made in our model were required due to the lack of published full structural refinements for certain regions of composition, temperature, and pressure space. There is a dearth of data available for the volume of Ti- and Cr-bearing spinels: we found only one in situ high-\(T \) study for Ti-bearing spinel, \(\text{Mg}_2\text{TiO}_4 \) (O’Neill et al. 2003), and not a single in situ high-\(P \) (at ambient or elevated-\(T \)) dataset. Likewise, the Martignago et al. (2003) in situ high-\(T \) study of three natural samples along the
MgAl$_2$O$_4$–MgCr$_2$O$_4$ binary is the only full refinement we currently have for Cr-bearing spinels measured at elevated conditions. As detailed in our discussion of Haavik et al. (2000), Méducin et al. (2004), and Antao et al. (2005a, b) (see the electronic appendix), there are some substantial disagreements in the literature even among compositions that have been more widely studied, for example, MgAl$_2$O$_4$ and Fe$_6$O$_4$, and some hints that the behavior of spinel at simultaneous high-P, T may be more complex than at high-P or high-T conditions alone. On the other hand, recent systematic measurements of the site occupancy and volume of binary spinels (Andreozzi and Lucchesi 2002; Bosi et al. 2009) allowed us to calibrate the effect of ordering on volume in a way not possible when the MELTS spinel model was originally developed (Sack and Ghiorso 1991a).

It is our hope that with the current advances in X-ray and neutron diffraction methods, more high-quality data will become available for these spinel compositions, particularly at simultaneous very high-P, T, enabling us to improve upon our model assumptions in future calibrations.

Acknowledgments We wish to thank Peter Laffi for identifying the garnet solid solution error in the original MELTS code, Ashley Nagle for pointing out the anomalously low spinel–garnet transition pressures obtained when the corrected garnet model is used, and Aaron Wolf for helpful discussions regarding statistical analysis. Comments by Associate Editor Jon Blundy are greatly appreciated, as are the Wolf for helpful discussions regarding statistical analysis. Comments by Associate Editor Jon Blundy are greatly appreciated, as are the

References

Antao SM, Hassan I, Crichton WA, Parise JB (2005b) Effects of high pressure and high temperature on cation ordering in magnesioferrite, MgFe$_2$O$_4$, using in situ synchrotron X-ray powder diffraction up to 1430 K and 6 GPa. Am Mineral 90:1500–1505

Efron B (1982) The jackknife, the bootstrap, and other resampling plans. Soc Ind Appl Math, Philadelphia

Fleet ME (1984) The structure of magnetite: two annealed natural magnetites, Fe$_{5.005}$O$_4$ and Fe$_{5.96}$Mg$_{0.04}$O$_4$. Acta Crystallogr C40:1491–1493

© Springer
Waerenborgh JC, Figueiredo MO, Cabral JMP, Pereira LCJ (1994) Powder XRD structure refinements and 57Fe Mössbauer effect study of synthetic Zn$_{1-x}$Fe$_x$Al$_2$O$_4$ (0 ≤ x ≤ 1) spinels annealed at different temperatures. Phys Chem Miner 21:460–468
Woodland AB, Bauer M, Ballaran TB, Hanrahan M (2009) Crystal chemistry of Fe$_{1+2}$Cr$_2$Si$_3$O$_{12}$ – Fe$_{1+4}$Fe$_2$Si$_3$O$_{12}$ garnet solid solutions and related spinels. Am Mineral 94:359–366